Synthetizing hydrodynamic turbulence from noise: Formalism and applications to Plankton dynamics

نویسنده

  • F. Sagués
چکیده

We present an analytical scheme, easily implemented numerically, to generate synthetic Gaussian 2D turbulent flows by using linear stochastic partial differential equations, where the noise term acts as a random force of well-prescribed statistics. This methodology leads to a divergencefree, isotropic, stationary and homogeneous velocity field, whose characteristic parameters are well reproduced, in particular the kinematic viscosity and energy spectrum. This practical approach to tailor a turbulent flow is justified by its versatility when analizing different physical processes occurring in advectely mixed systems. Here, we focuss on an application to study the dynamics of Planktonic populations in the ocean.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Turbulence on the Dynamics of Monopile Offshore Wind Turbine under the Wave and Wind Excitations

In recent years, the use of offshore wind turbines has been considered on the agenda of the countries which have a significant maritime boundary due to more speed and stability of wind at sea. The aim of this study is to investigate the effect of wind turbulence on the aero-hydrodynamic behavior of offshore wind turbines with a monopile platform. Since in the sea, the wind turbine structures ar...

متن کامل

2DV Nonlinear k-ε Turbulence Modeling of Stratified Flows

The commonly used linear k-ε turbulence model is shown to be incapable of accurate prediction of turbulent flows, where non-isotropy is dominant. Two examples of non-isotropic flows, which have a wide range of applications in marine waters, are saline water flow and the stratified flows due to temperature gradients. These relate to stratification and consequently, variation of density through...

متن کامل

Zooplankton can actively adjust their motility to turbulent flow

Calanoid copepods are among the most abundant metazoans in the ocean and constitute a vital trophic link within marine food webs. They possess relatively narrow swimming capabilities, yet are capable of significant self-locomotion under strong hydrodynamic conditions. Here we provide evidence for an active adaptation that allows these small organisms to adjust their motility in response to back...

متن کامل

Ecosystem modeling analysis of size-structured phytoplankton dynamics in the York River estuary, Virginia (USA). I. Development of a plankton ecosystem model with explicit feedback controls and hydrodynamics

An ecosystem simulation model was developed to investigate potential mechanisms controlling the size-structured phytoplankton and nutrient dynamics in the mesohaline zone of the York River estuary. The model included 12 state variables in a unit volume (m3) describing the distribution of carbon and nutrients (nitrogen, phosphorus) in the surface mixed layer. General size-scale relationships and...

متن کامل

Intermittent turbulence and copepod dynamics: increase in encounter rates through preferential concentration

Turbulence has a strong influence on plankton contact rate, which is a crucial parameter for plankton ecology. In the field of particle-turbulence interactions, it is now well known that fully developed turbulence does not always homogenise particle distributions, but instead creates, in some well-defined conditions, preferential concentrations of heavy particles. Many studies have considered t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010